HSPA+ in Release-7 and Release-8  

Thought of adding this while I am in mode of making lists. So whats in HSPA evolution in Rel-7 and Rel-8. Lot of people are unaware that HSPA+ was big enough to finish off in Rel-7 and was definite to spill over in Rel-8

HSPA+ Features in Release 7

  • Higher Order Modulation Schemes

    • Advantages and weaknesses of higher order modulation
      - Interference Sensitivity
      - QPSK
      - 16-QAM, 64-QAM)
      - Consequences
      - Behavior in Time Variant Mobile Radio Channels
      - Behavior of a time variant mobile radio channel
      - Effect of amplitude variations
      - Effect of phase variations

    • 16-QAM for the S-CCPCH (DL)
      - MBSFN only
      - Interleaving
      - Modulation
      - Scaling factors

    • 64-QAM for the HS-PDSCH (DL)
      - Interleaving
      - Constellation Rearrangement
      - Modulation
      - Related UE Categories

    • 16-QAM for UL (4-PAM for the E-DPDCH)
      - HARQ Rate Matching Stage
      - Interleaver
      - Modulator
      - UE category

    • Overview Advantages and Disadvantages
      - Higher peak data rate
      - Better resource utilization
      - Blind choice of modulation scheme
      - High SNIR requirement
      - More TX power requirement
      - Low range
      - Small cell environment
      - Restrictions of use for high UE moving speeds

    • Channel Estimation Algorithms
      - Normal Algorithm
      - Gathering pilot information
      - Channel estimation
      - Data detection
      - Advantage
      - Disadvantage
      - Advanced Algorithms
      - Shorter channel estimation window
      - Moving channel estimation window
      - Adaptive detection
      - Turbo detection
      - Advantages
      - Disadvantages

    • Performance16-QAM in the UL
      - Performance on Link Level 16-QAM in the UL
      - Performance of BPSK compared to 4-PAM
      - Influence of non-linearity of the power amplifier
      - Performance on System Level
      - Behavior with increasing load
      - Maximum versus average throughput

    • Higher Order Modulation Testing
      - Test Setup for 16-QAM in the UL
      - RF components
      - Discussion of the setup
      - Selected Performance Requirements for 16-QAM in the UL
      - BPSK vs. 4-PAM
      - Effect of RX diversity
      - Effect of high degree of multipath
      - Effect of high UE moving speed

  • MIMO

    • Introduction to MIMO Technology
      - The Basics: Signal Fading Physics between TX and RX
      - Scattering
      - Refraction
      - Reflection
      - Diffraction
      - Multiplexing Dimensions
      - The Multipath Dimension
      - MIMO General Operation

    • MIMO Feedback Procedure (PCI)
      - Motivation of Spatial Precoding
      - Plain MIMO
      - Multiple rank beamforming
      - Spatial Precoding
      - Codebook, PCI and CQI Loop
      - Codebook
      - PCI and CQI loop

    • MIMO Algorithms
      - Linear MIMO Algorithms (Preparation work, Equalizer at the end of the processing chain,
      - Equalizer at the beginning of the processing chain), Non-Linear MIMO Algorithms

    • MIMO Performance
      - MIMO Performance on Link Level (SISO vs. SIMO, SIMO vs. MIMO, 2x2 MIMO vs. 4x2
      - MIMO, 16-QAM vs. 64-QAM), Performance on System Level (MIMO vs. SIMO, 50% vs.
      - 75% power allocation, 0% vs. 4% feedback errors)

    • MIMO Tests
      - Official Test Setups (Test NodeB, Fading simulator, Noise generator, UE under test, Single stream test setup, Double stream test setup), Quick and Easy Test Setups (The
      easiest test setup, A more reliable test setup: The MIMO circle), Selected Performance
      - Requirement Figures (Conditions, 64-QAM performance, Dual stream MIMO
      performance, Single stream MIMO performance)

  • Continuous Packet Connectivity (CPC)

    • Basic features
      - Uplink Discontinuous Transmission (DTX), Downlink Discontinuous Reception (DRX)

    • RRC message ID’s
      - DTX and DRX Information

    • CPC Timing
      - Uplink CQI transmission

    • Example for Uplink DPCCH Burst Pattern for 10 ms E-DCH TTI
      - Uplink DRX, Downlink DRX

    • Uplink DPCCH preamble and postamble
      - Uplink DPCCH preamble and postamble for the DPCCH only transmission, Uplink DPCCH preamble and postamble for the E-DCH transmission, Uplink DPCCH preamble and postamble for the HS-DPCCH transmission

    • Example of simultaneous Uplink DTX and Downlink DRX

    • CPC and Enhanced F-DPCH
      - Timing Implications for CPC + Enhanced F-DPCCH

  • Upgraded L1 Signaling

    • HS-SCCH Review of Rel. 5 and 6
      - HS-SCCH Frame Structure, HS-SCCH Part 1 and 2 Forward Error Coding Chain, UE
      specific masking of Part 1 and Part 2, HS-PDSCH Code Allocation through Part1 of HSSCCH,
      - Transport Block Size Determination – TFRI Mapping

    • HS-SCCH of Rel. 7
      - HS-SCCH Overview of Rel. 7 (HS-SCCH type 1, No HS-SCCH, HS-SCCH type 2, HSSCCH
      type 3), HS-SCCH Type 1 (HS-SCCH Type 1, HS-SCCH Type 1 for Configured 64-QAM Operation, HS-SCCH Orders, 64-QAM Constellation Versions), HS-SCCH Type 2 (for HS-SCCH less operation) (Use of the HS-SCCH-less operation, Procedure HSSCCH-less operation), HS-SCCH Type 3 (HS-SCCH Type 3 Overview, Modulation and
      Transport Block Number , HARQ Process Number, Redundancy Version and
      Constellation Version)

    • HS-DPCCH of Rel. 7
      - HS-DPCCH ACK/NACK (ACK-NACK of primary TB in R5, Preamble and postamble in
      R6, ACK-NACK of 2 TB’s in R7), HS-DPCCH PCI and CQI type A and B (CQI in case of
      no MIMO operation, PCI and CQI in case of MIMO with 1 TB (CQI type A), PCI and CQI
      in case of MIMO with 2 TB’s (CQI type B))

    • E-AGCH and E-DPCCH
      - Changes in the E-TFCI tables, Changes in the AG tables, Changes in the SG tables

  • MAC-ehs Entity versus MAC-hs

    • UTRAN side MAC-hs Details – CELL_DCH only
      - Flow Control, Scheduling/Priority Handling, HARQ, TFRC selection

    • UE side MAC-hs Details – CELL_DCH only
      - HARQ, Reordering Queue distribution, Reordering, Disassembly

    • UTRAN side MAC-ehs Details
      - Some advantages of MAC-ehs compared to MAC-hs , Flow Control, HARQ, TFRC
      selection (~ TFRI), LCH-ID mux, Segmentation

    • UE side MAC-ehs Details
      - HARQ , Disassembly, Reordering queue distribution, Reordering, Reassembly, LCH-ID demultiplexing

    • Differences in the MAC-ehs and MAC-hs Header
      - MAC-hs Header Parameter Description
      - MAC-hs SDU , , MAC-hs Header of MAC-hs PDU), MAC-ehs Header Parameter Description
      - MAC-ehs Header Parameter Details
      - HARQ Process Work Flow in UE – MAC-hs / MAC-ehs
      - Split HS-DSCH Block Functionality
      - Practical Exercise: MAC-hs contra MAC-ehs
      - MAC-hs / MAC-ehs Stall Avoidance
      - Timer-Based Scheme
      - Window Bases Scheme
      - MAC-(e)hs Reordering Functionality – Timer / Window based

  • Flexible RLC PDU Sizes

    • The RLC AMD PDU – Rel. 7 Enhancements
      - The Poll (POLL) super-field
      - RLC AMD Header Fields
      - Release 7 Enhancement of the HE-Field and LI

    • Comparison of RLC-AM between Rel. 6 and Rel. 7
      - RLC-AM Overhead using fixed or flexible PDU size
      · RRC State Operation Enhancements

    • Transport Channel Type Switching with HSPA in R6
      - Transport Channel Combinations between UL and DL, Radio Bearer Multiplexing Options in Rel. 6

    • Operation of UTRA RRC States in Release 7
      - UE Idle mode, CELL_DCH state

    • HS-DSCH Reception in CELL_FACH and XXX_PCH
      - Overview (UE dedicated paging in CELL_DCH, CELL_FACH and CELL_PCH, BCCH
      reception in CELL_FACH, FACH measurement occasion calculation, Measurement
      reporting procedure), (1) Operation in the CELL_FACH state (DCCH / DTCH reception in
      CELL_FACH state , User data on HS-DSCH in Enhanced CELL_FACH state), (2) Operation in the CELL_FACH state – Cell Update, (3) RRC Idle to transient CELL_FACH
      (Common H-RNTI selection in CELL_FACH (FDD only), H-RNTI selection when entering
      Connected mode (FDD only) ), Operation in the URA_PCH or CELL_PCH state (Data
      Transfer in CELL_PCH with dH-RNTI, State Transision from CELL_PCH to CELL_FACH
      to CELL_DCH, CELL_PCH and URA_PCH enhanced Paging Procedure)

HSPA+ Features in Release 8

  • Overview of HSPA+ Related Work Items in R8

    • Requirements for two branch IC

    • CS voice over HSPA

    • Performance req. for 15 HSDPA codes

    • MIMO + 64-QAM

    • Enhanced DRX

    • Improved L2 for UL

    • Enhanced UL for CELL_FACH

    • R3 Enhancements for HSPA

    • Enhanced SRNS relocation

  • MIMO combined with 64-QAM

    • New UE Categories
      - Data Rate, Soft IR memory

    • L1 Signaling of MIMO and 64-QAM
      - Modulation Schemes and TB Sizes (Signaling on the HS-SCCH type 3, Dilemma to signal
      on the modulation schema and TB number field, Solution), CQI Signaling, CQI Tables
      used


Interested readers can refer to Alcatel-Lucent presentation in HSPA+ Summit here.

There is also an interesting Qualcomm paper titled, "Release 7 HSPA+ For Mobile Broadband Evolution" available here.



[get this widget]

AddThis Social Bookmark Button